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Surface Energy Fluxes
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Figure: Fisher, Lawrence, Bonan, Clark, unpublished



Surface Energy Balance
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Surface Energy Balance

Surface albedo a function of
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% o % g — Land type (vegetated, glacier, lake, urban)
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%, ?IDE < §° X = — Plant functional type (leaf and stem
= °o2 T § reflectance and transmission, leaf angle)
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- | 3 — Snow albedo
Reflected solar § @ .
¢ 28 A — Snow cover fraction
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solar £ — Snow age (snow grain size)
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— Snow darkening due to aerosols

Aerosol
deposition C (SNICAR)

— Vertical absorption of solar

— Soil color and soil moisture
— Solar zenith angle
Soil (sand, clay, organic

— Amount of direct vs diffuse solar radiation

— Amount of visible vs IR solar radiation



Soil Water

Snow, lce, and Aerosol Radiative Model (SNICAR)

Ground Water

— Snow darkening from deposited black carbon, mineral dust, and organic matter

— Vertically-resolved solar heating in the snowpack

— Snow aging (evolution of effective grain size) based on:

* Snow temperature and temperature gradient

* Snow density
* Liquid water content and
* Melt/freeze cycling
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Radiative Absorption with Depth in Snow
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Biases in simulated land albedo
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1979-2008 change in CrRE: Seasonal cycle

Change in Cryosphere Forcmg from 1979 to 2008

'c § § § 1 —=—Land Snow
1.8-..5b...5. ...... i o e Sonloe
51.6--@ ------- R NI HIITE AT TR bl | e SnOW+HICE |

@ Sea-ice peak change occurs
In summer

@ June peak in land snow
change is sensitive to
mountain snow cover

estimates (Himalaya, Tien
Shan)

Figure : 'X' indicates month of
statistically-significant change

(p =0.01)
Flanner et al., 2011



SNOW ALBEDO FEEDBACK (SAF)

Snow melt

warming: Decreased
enhanced surface

by +ve albedo
Increased
insolation
absorbed

* SAF is a positive feedback climate Nee——— e
mechanism and an important driver 1) c——————————eesemee

of regional climate change over the
Northern Hemisphere (NH)

extratropics. fr e
* Models exhibit large variability in T ——

the strength of this process.

* Intermodel spread in SAF explains —_—— BNET | 1
40-50% of the variability in e
projected spring NH land warming. e ————— ASNC
—_—--- - OTEM | t
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Feedback (%/K)

Fletcher et al. 2012



LARGE BIASES IN SNOW-COVERED SURFACE ALBEDO

Boreal Forest Arctic Tundra
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Maximum monthly mean
climatological (1980-2005)
surface albedo over the
boreal forest and Arctic
Tundra. Color coding
shows when the peak
albedo occurs.
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* Most climate models struggle to capture the timing and/or magnitude of seasonal
changes in albedo over both boreal forest and Arctic tundra regions.

* For CCSM4, albedo decreases too early in winter because of an issue with how
canopy snow is parameterized, leading to weak SAF.

Thackeray et al., 2015



Snow-albedo feedback in CESM/CLM: Impact of canopy snow processes
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REDUCTION OF SAF BIAS IN CLM5
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Monthly climatological change in albedo across the boreal
forest (>75%) for the CMIP5 median, and several versions
of CLM. The dark gray region captures the interquartile
range for the CMIP5 ensemble. The light gray box shows
when observational uncertainty is largest.

Model Boreal Spring SAF (%/K)

CCsM4 -0.60
CLM4 -0.64
CLM4.5 -0.68
CLM5 -0.83
MODIS -0.87




Snow-covered / snow-free albedo contrast (Adisnow)
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Snow/free albedo contrast
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@ Why is the contrast so
variable in space?

@ Reduced snow albedo impact
over mature forests

@ Large Aasnow Over

grasslands and tundra

@ Note that NOAA /Rutgers

“snow-covered’ surfaces can
be up to 50% snow-free
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TROPICAL FOREST

Bonan (2008) Science 320:1444-1449

Not all forest ecosystems have
the same impact on climate
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Credit: Nicolle Rager Fuller, National Science Foundation
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TROPICAL FOREST

Bonan (2008) Science 320:1444-1449

Differences in ecosystem functioning have
implications for land climate
mitigation policy
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Land-cover / land-use change (prescribed)




Change in tree and crop cover (% of grid cell)
(a) Historical (2005-1850) Tree PFTs
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(a) Historical (2005-1850) Crop PFTs
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Historical LULCC

[ Loss of tree cover and
increase in cropland

L Farm abandonment and
reforestation in eastern U.S.
and Europe

d Extensive wood harvest

Impact of LULCC on climate
through

e Albedo

* Surface roughness

e Surface heat flux partitioning
* Carbon exchange



Albedo

(a) MODIS
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Development efforts related to radiation

Plant competition for light

CLM5 —>  CLM(FATES)

pg- !

“Big-Leaf” vegetation Demographic Vegetation




Natural vegetation patterns imply subgrid controls from
soil moisture convergence, slope, and aspect




- Representative hillslopes (CLMS option)

Serial subsurface
flow inputs to
riparian zone

Independent
(parallel)
subsurface flow
inputs to riparian
zone

Swenson et al., in prep



* S0il Water

Ground Water

Soil Temperature (I m)

South facing North facing

+2°C

0°C

-2°C




Questions




Land surface energy budget terms

* Compared across ~160 FLUXNET sites, LSMs, GCMs and reanalyses
struggle to reproduce even the global pattern of annual means.
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Two-stream radiative transfer
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Radiative transfer uses the
two-stream approximation
(Dickinson, Sellers) to
determine reflected and
absorbed solar radiation



Urban Model

Atmospheric Forcing
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Land modelling, why? Land-atmosphere interactions

30-45 day forecast conditioned on SM
ALL DATES EXTREME QUINTILES

.............
-----
oooooo
............
....................
...............
.....

* When, where, and by how much do land Koster et al. 2010
—fluxes influence atmosphere, surface
temperature, clouds, precipitation, etc.?

* Land-driven predictability

— Significant skill, especially when
conditioned on amplitude of initial soil
moisture anomaly

— Increased land-atmosphere coupling in
future warmer climate, increased land-

driven skill?

e Land influence on extremes
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Land feedbacks on droughts andf floods

Snow-albedo and snow-soil T feedbacks.

Woater and food secur

— >1/6t" world population dependent on
water from seasonal snowpacks

Woater - plant interactions

— Plant water use efficiency likely to
increase with CO,

Streamflow prediction

Million Square km

Trends in CT

(1948-2002)
o8

Red - Earlier runoff

NH snow cover

anomaly (Rutger’s
Global Snow Lab)

88 92 96 00 04

Blue - Later runoff _

Stewart et al.,
2005

Image: Kimon Maritz



Land modeling why? Land-use and land-cover change

* ~25% non-ice land area undergone g FE L SN

Human

anthropogenic land-cover change ‘ oopin

o 50

e ~80% non-ice land area under some form
of land management

* Regionally, LULCC as impactful on
surface climate as greenhouse gases ; - /i pp—

change since 1993

 ~1/3 of direct historic carbon emissions
(180 = 80PgC from land use,~400 PgC
from fossil fuel and cement),

« Deforestation: loss of Additional Sink
Capacity yields indirect C impact

 Effectiveness of afforestation and biofuels
for CO, mitigation

* Urban-rural differences in climate change
impacts, e.g. ;heat stress

ATXX[K]

Thierry, Lawrence, et al., 2017

Image: Frans Lanting/Robert Harding Picture Library



Land modeling, why? Carbon and ecology

Carbon and nitrogen cycle interactions
and their impact on long term trajectory
of terrestrial carbon sink

High uncertainty in projected land C sink

— Emissions driven RCP8.5:
795 to 1140 ppm (source of £1.2C
uncertainty on top of 3.7C projected
change)

Vulnerability of ecosystems to climate
change as well as natural and human
disturbances

Ecosystem services

Ecosystem management to mitigate
climate change

Image: Joel Vodell



Hydrology Biogeochemical cycles CLM5.0

5 Surface energy fluxes
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Infiltra-
tion

: Unconfined aquifer

Throughfall

vaporation

Surface

... and the Surface Water Balance

P=E,+E +E.+R+

(AW, +AW,  +AW_,_ +AW__ ) | At

sfcw can

P is rainfall/snowfall,

E is soil evaporation,

E; is transpiration,

Ec is canopy evaporation,

R is runoff (surf + sub-surface),

AW [ At, AW, [ At, AW, [ At, AW, | At,
are the changes in soil moisture, surface
water, snow, and canopy water over a
timestep




Terrestrial water and energy cycles intricately linked

“The ability of a land-surface scheme to model evaporation correctly depends crucially
on its ability to model runoff correctly. The two fluxes are intricately related
through soil moisture.”

(Koster and Milly, 1997).

Runoff and evaporation both

vary non-linearly with soil

moisture

Evaporation, Runoff

Soil wethess — =————



Land model complexity: Snow model example

* Up to |0-layers of varying thickness

* Represented processes

State Variables * Accumulation and fresh snow density f (T, wind)
* Snow melt and refreezing

N,w

liq,i’Wice,i’AZi’];

* Snow aging
* Water and energy transfer across snow layers
* Snow compaction

* destructive metamorphism due to temperature and wind
* overburden

* melt-freeze cycles

* Sublimation

>

* Aerosol (black carbon, dust) deposition

o) » Canopy snow storage and unloading

» Canopy snow radiation

* Snow burial of vegetation

* Show cover fraction

Snow depth
0

o * Missing processes

* Blowing snow

* Subgrid variations in snow depths

Tsnow * Depth hoar



Plant Functional Type Parameters

Optical properties (visible and
near-infrared):

— Leaf angle

— Leaf reflectance

— Stem reflectance

— Leaf transmittance

— Stem transmittance
Fire:
— Combustion completeness

— Fire mortality

Land models are parameter

heavy!!!

* Morphological properties:

Leaf area index (annual cycle)

Stem area index (annual cycle)

Leaf dimension, leaf orientation
Roughness length/displacement height
Canopy top and bottom height

Root depth and distribution

* Photosynthetic parameters:

Specific leaf area

m (slope of conductance-photosynthesis relationship)
Vcmax (maximum rate of carboxylation)

Leaf carbon to nitrogen ratio

Fraction of leaf nitrogen in Rubisco

Root conductivity, plant conductivity



Veeted

Column

Soil

PFT

PFT1 PFT2 PFT3
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Plant Functional Types:

0. Bare

Tree;

1. Needleleaf Evergreen, Temperate
2. Needleleaf Evergreen, Boreal

J. Needleleaf Deciduous, Boreal

4. Broadleaf Evergreen, Tropical

3, Broadleaf Evergreen, Temperate
6. Broadleaf Deciduous, Tropical

7. Broadleaf Deciduous, Temperate
8. Broadleaf Deciduous, Boreal

Herbaceous / Understorey:

9. Broadleaf Evergreen Shrub, Temperate
10. Broadleaf Deciduous Shrub, Temperate
11, Broadleaf Deciduous Shrub, Boreal
12. C3 Arctic Grass
13. C3 non-Arctic Grass
14, C4 Grass
13. Crop



